Collective dynamics in dijet+QGP-fluid system

Yasuki Tachibana
Department of Physics, The University of Tokyo

Collaborator: Tetsufumi Hirano (Sophia Univ.)

4th Joint Meeting of the Nuclear Physics Divisions of APS and JPS
Waikoloa, Hawaii, October 9th, 2014
QGP and Jets in Heavy Ion Collisions

- **Relativistic Hydrodynamics**
 - Description of space-time evolution of QGP

- **Jet Quenching**
 - Creation of high-energy partons (jets)
 - Energy loss of jets due to strong interactions with the medium
QGP and Jets in Heavy Ion Collisions

- Relativistic Hydrodynamics
 - Description of space-time evolution of QGP

- Jet Quenching
 - Creation of high-energy partons (jets)
 - Energy loss of jets due to strong interactions with the medium
Where and how do the lost energies diffuse inside the medium?

- Relativistic Hydrodynamic Equations with Source Terms

\[\partial_\mu T^{\mu\nu} = J^\nu \]

- Energy-momentum tensor of the QGP fluid
- Energy and momentum deposited from the jets

- Mach Cone
 - Interference of sound waves

Information about QGP’s properties and jet quenching
Energy Deposition into Fluid

Where and how do the lost energies diffuse inside the medium?

- **Relativistic Hydrodynamic Equations with Source Terms**
 \[\partial_\mu T^{\mu\nu} = J^\nu \]
 - Energy-momentum tensor of the QGP fluid
 - Energy and momentum deposited from the jets

- **Mach Cone**
 - Interference of sound waves

Information about QGP’s properties and jet quenching
Energy Deposition into Fluid

Where and how do the lost energies diffuse inside the medium?

- Relativistic Hydrodynamic Equations with Source Terms
 \[\partial_\mu T^{\mu\nu} = J^{\nu} \]
 - Energy-momentum tensor of the QGP fluid
 - Energy and momentum deposited from the jets

- Mach Cone
 - Interference of sound waves

Information about QGP’s properties and jet quenching
Energy Deposition into Fluid

Where and how do the lost energies diffuse inside the medium?

- Relativistic Hydrodynamic Equations with Source Terms

\[\partial_\mu T^{\mu\nu} = J^\nu \]

- Energy-momentum tensor of the QGP fluid
- Energy and momentum deposited from the jets

- Mach Cone
 - Interference of sound waves

Information about QGP’s properties and jet quenching
Energy Deposition into Fluid

Where and how do the lost energies diffuse inside the medium?

- **Relativistic Hydrodynamic Equations with Source Terms**

 \[\partial_{\mu} T^{\mu\nu} = J^{\nu} \]

 - Energy-momentum tensor of the QGP fluid
 - Energy and momentum deposited from the jets

- **Mach Cone**
 - Interference of sound waves

 Information about QGP’s properties and jet quenching
Observation of Dijet Events at LHC

Net-p_T along the Strongly Quenched Jet

$$\rho_T^\parallel = \sum_i -p_T^i \cos (\phi_i - \phi_{\text{Leading Jet}})$$

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

$\Delta R < 0.8$
$\Delta R > 0.8$

$A_J = \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}}$

(Asymmetry Ratio)
Observation of Dijet Events at LHC

- **Net-** \(p_T \) along the Strongly Quenched Jet

\(\Delta R = 0.8 \)

\[
p_T^{||} = \sum_i -p_T^i \cos (\phi_i - \phi_{LeadingJet})
\]

\[
\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}
\]

\[
A_J = \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}}
\]

(Assymmetry Ratio)

4th Joint Meeting of the Nuclear Physics Divisions of APS and JPS, Waikoloa, Hawaii, October 9th, 2014
Observation of Dijet Events at LHC

Net- \(p_T \) along the Strongly Quenched Jet

\[\Delta R = 0.8 \]

\[\vec{p}_T^\parallel = \sum_i -p_T^i \cos(\phi_i - \phi_{Leading\,Jet}) \]

\[\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \]

Overall

In-Cone

Out-of-Cone

\(\langle \vec{p}_T^\parallel \rangle \) GeV/c

\(p_{T1} - p_{T2} \)

\(p_{T1} + p_{T2} \)

\(A_J = \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}} \)

(Asymmetry Ratio)

\(\Delta R < 0.8 \)

\(\Delta R > 0.8 \)

- > 0.5 GeV/c
- 0.5 - 1.0 GeV/c
- 1.0 - 2.0 GeV/c
- 2.0 - 4.0 GeV/c
- 4.0 - 8.0 GeV/c
- > 8.0 GeV/c

Christof Roland
(talk at QM2011)
Observation of Dijet Events at LHC

Net-p_T along the Strongly Quenched Jet

$$\Delta R = 0.8$$

$$p_T^\parallel = \sum_i -p_T^i \cos (\phi_i - \phi_{LeadingJet})$$

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

Overall

In-Cone

Out-of-Cone

$$\Delta R < 0.8$$

$$\Delta R > 0.8$$

$$A_J = \frac{pT1 - pT2}{pT1 + pT2}$$

(Assymmetry Ratio)
Observation of Dijet Events at LHC

Net- p_T along the Strongly Quenched Jet

$$\Delta R = 0.8$$

$$p_T^\parallel = \sum_i -p_T^i \cos (\phi_i - \phi_{\text{LeadingJet}})$$

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

Figure 15: Average missing transverse momentum, for both centrality ranges and even for events with large observed dijet asymmetry, in both

- **Overall momentum balance of dijet events**

$$\int D L \ dt = 6.7$$

<table>
<thead>
<tr>
<th>In-Cone</th>
<th>Out-of-Cone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>0.1 0.2 0.3 0.4</td>
</tr>
<tr>
<td>ΔR < 0.8</td>
<td>0.1 0.2 0.3 0.4</td>
</tr>
<tr>
<td>ΔR > 0.8</td>
<td>0.1 0.2 0.3 0.4</td>
</tr>
</tbody>
</table>

Asymmetry Ratio

$$A_J = \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}}$$

Christof Roland
(talk at QM2011)
Observation of Dijet Events at LHC

Net-p_T along the Strongly Quenched Jet

$$\Delta R = 0.8$$

$$p_T^\parallel = \sum_i -p_T^i \cos (\phi_i - \phi_{LeadingJet})$$

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

Overall

<table>
<thead>
<tr>
<th>$\langle p_T^\parallel \rangle$ GeV/c</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

In-Cone

<table>
<thead>
<tr>
<th>$\Delta R < 0.8$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Out-of-Cone

<table>
<thead>
<tr>
<th>$\Delta R > 0.8$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Asymmetry Ratio

$$A_J = \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}}$$
Observation of Dijet Events at LHC

Net-\(p_T \) along the Strongly Quenched Jet

\[
p_T^{||} = \sum_i -p_T^i \cos (\phi_i - \phi_{\text{LeadingJet}})
\]

\[
\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}
\]

\(p_T \)

Overall

In-Cone

Out-of-Cone

\(\Delta R < 0.8 \)

\(\Delta R > 0.8 \)

\[
A_J = \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}}
\]

(Asymmetry Ratio)
Observation of Dijet Events at LHC

Net-p_T along the Strongly Quenched Jet

\[p_T^\parallel = \sum_i -p_i^T \cos (\phi_i - \phi_{\text{Leading Jet}}) \]
\[\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \]

Overall

In-Cone

Out-of-Cone

Low-p_T Particles

\[A_J = \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}} \]

(Asymmetry Ratio)
Observation of Dijet Events at LHC

- **Net-** p_T along the Strongly Quenched Jet

$$ p_T^{\parallel} = \sum_i -p_T^i \cos (\phi_i - \phi_{Leading Jet}) $$

$$ \Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} $$

Christof Roland (talk at QM2011)
Observation of Dijet Events at LHC

- **Net-** p_T along the Strongly Quenched Jet

$p_T^{\parallel} = \sum_i -p_T^i \cos (\phi_i - \phi_{\text{LeadingJet}})$

$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$

- Leading Jet p_{T2}
- Subleading Jet p_{T1}

<Christof Roland (talk at QM2011>
Observation of Dijet Events at LHC

Net-p_T along the Strongly Quenched Jet

Subleading Jet p_T1

Leading Jet p_T2

CMS Preliminary

$\langle p_T^{||} \rangle = \sum_i -p_T^i \cos(\phi_i - \phi_{LeadingJet})$

$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$

Low-p_T enhancement up to large ΔR

$\phi > 0.5$

1.0 - 2.0

4.0 - 8.0

0.5 - 1.0

2.0 - 4.0

8.0 - 300.0
Observation of Dijet Events at LHC

- **Net-** p_T along the Strongly Quenched Jet

$$p_T^\parallel = \sum_i -p_T^i \cos (\phi_i - \phi_{\text{Leading Jet}})$$

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

- **Leading Jet**
 - p_{T1}

- **Subleading Jet**
 - p_{T2}

- CMS

- Low-p_T enhancement up to large ΔR

- Originating from excited medium?

[Graph representing CMS data with color-coded regions indicating different p_T values and ΔR ranges: 0.5 - 1.0, 1.0 - 2.0, 4.0 - 8.0, 8.0 - 300.0 with $\phi > 0.5$.]
Dijet + Expanding QGP-fluid System

Solve the hydro eqs. with source terms numerically **without linearization**

- **Dijets through an Expanding Fluid**
 - Ideal QGP-fluid in **(3+1)-D** Milne coordinate system (τ, x, y, η)

- **Freeze-out**
 - Isothermal freezeout surface at $T_{fo} = 0.16$ GeV
 - Cooper-Frye formula
Yasuki Tachibana, "Collective dynamics in dijet+QGP-fluid system"

Dijet + Expanding QGP-fluid System

- Ideal QGP-fluid in \((3+1)\)-D Milne coordinate system \((\tau, x, y, \eta)\)

Solve the hydro eqs. with source terms numerically without linearization

Dijets through an Expanding Fluid

Freeze-out

- Isothermal freezeout surface at \(T_{fo} = 0.16\ \text{GeV}\)
- Cooper-Frye formula

Transverse plane \(\eta = 0\)

Reaction plane \(x = 0\ \text{fm}\)

Leading Jet \(p_T1\)

Subleading Jet \(p_T2\)

200 GeV

200 GeV

\(x\)

\(y\)
Momentum Flow in Dijet Event

- Net-p_T along the sub-leading jet

\[
\langle p_T^{||} \rangle = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{Leading Jet}}), \quad \Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}
\]

Overall

\[
\langle p_T^{||} \rangle \text{ GeV/c}
\]

In-Cone

\[
\Delta R < 0.8
\]

Out-of-Cone

\[
\Delta R > 0.8
\]
Momentum Flow in Dijet Event

- Net-\(p_T\) along the sub-leading jet

\[
\langle p_T^{||} \rangle = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{Leading Jet}}), \quad \Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}
\]

![Diagram showing momentum flow in dijet event](image)

Overall

In-Cone \(\Delta R < 0.8\)

Out-of-Cone \(\Delta R > 0.8\)
Momentum Flow in Dijet Event

\[\hat{\rho}_T^\parallel = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{Leading Jet}}), \quad \Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \]

\begin{align*}
\langle \hat{\rho}_T^\parallel \rangle \text{ GeV/c} \\
\text{vs} \Delta R \text{ GeV/c} \\
\end{align*}

Deposited energy transported by the collective flow upto large \(\Delta R \).
Yasuki Tachibana, "Collective dynamics in dijet+QGP-fluid system"

4th Joint Meeting of the Nuclear Physics Divisions of APS and JPS, Waikoloa, Hawaii, October 9th, 2014

Contribution of Medium Excited by Dijet

Only Contribution from Hydro (Jets are not included)

[Graph showing subleading and leading jet directions with corresponding differential distributions]
Contribution of Medium Excited by Dijet

Only Contribution from Hydro (Jets are not included)

Leading jet direction

\[\frac{d\langle p_T \rangle}{d\phi d\eta} \text{ GeV/c} \]

Subleading jet direction

\[\frac{d\langle p_T \rangle}{d\phi d\eta} \text{ GeV/c} \]

\[p_T > 8 \text{ GeV/c} \]

4th Joint Meeting of the Nuclear Physics Divisions of APS and JPS, Waikoloa, Hawaii, October 9th, 2014
Contribution of Medium Excited by Dijet

Only Contribution from Hydro (Jets are not included)

Leading jet direction

Subleading jet direction

\[
\frac{d\langle p_T \rangle}{d\phi d\eta} \quad \text{GeV}/c
\]

\[
\frac{d\langle p_T \rangle}{d\phi d\eta} \quad \text{GeV}/c
\]

\[
4 \text{ GeV}/c < p_T < 8 \text{ GeV}/c
\]
Contribution of Medium Excited by Dijet

Only Contribution from Hydro (Jets are not included)

$\frac{d\langle p_T \rangle}{d\phi d\eta} \text{ GeV/c}$

Leading jet direction

Subleading jet direction

$2 \text{ GeV/c} < p_T < 4 \text{ GeV/c}$
Contribution of Medium Excited by Dijet

Only Contribution from Hydro (Jets are not included)

$\frac{d\langle p_T \rangle}{d\phi d\eta}$ GeV/c

Leading jet direction

Subleading jet direction

$1\,\text{GeV}/c < p_T < 2\,\text{GeV}/c$
Contribution of Medium Excited by Dijet

Only Contribution from Hydro (Jets are not included)

Leading jet direction

Subleading jet direction

\[
\frac{d \langle p_T \rangle}{d \phi d \eta} \text{ GeV/c}
\]

\[
\frac{d \langle p_T \rangle}{d \phi d \eta} \text{ GeV/c}
\]

0.5 GeV/c < \(p_T \) < 1 GeV/c
Contribution of Medium Excited by Dijet

Only Contribution from Hydro (Jets are not included)

Leading jet direction

Subleading jet direction

Lower- p_T Broader in subleading direction
Contribution of Medium Excited by Dijet

Only Contribution from Hydro (Jets are not included)

Leading jet direction

Subleading jet direction

Lower- p_T → Broader in subleading direction
Summary

- Collective response to jet propagation in QGP
 - Relativistic hydrodynamic equations with source terms

- A pair of jets traveling through an expanding fluid
 - Solve the equation numerically without linearization
 - Ideal fluid in full (3+1)-D Milne coordinate
 - Mach cones distorted by the expansion
 - Low-p_T enhancement up to large angles from jet
$\frac{d\langle p_T \rangle}{d\phi d\eta}$ GeV/c

Leading jet direction

Subleading jet direction

$\frac{d\langle p_T \rangle}{d\phi d\eta}$ GeV/c
$\frac{d\langle p_T \rangle}{d\phi d\eta} \text{ GeV}/c$

Leading jet direction

Subleading jet direction

$\frac{d\langle p_T \rangle}{d\phi d\eta} \text{ GeV}/c$
$0.5 \text{ GeV}/c < p_T < 1 \text{ GeV}/c$