Di-jet asymmetric momentum transported by QGP fluid

Yasuki Tachibana

Department of Physics, The University of Tokyo

Collaborator: Tetsufumi Hirano (Sophia Univ.)

Hard Probes 2013, Stellenbosch Institute for Advanced Study, 7 November 2013
Outline

- Introduction
- Hydro Model with Source Terms
- Simulations and results
- Summary
Introduction
Di-jet asymmetry

- **Jet quenching**
 - Creation of high-energy partons (jets)
 - Energy loss of jets due to strong interactions with the medium

- **Observation of di-jet asymmetry**
 - Pair creations of jets
 - Energy difference between the observed jets

Christof Roland (talk at QM2011), modified
Di-jet asymmetry

- **Jet quenching**
 - Creation of high-energy partons (jets)
 - Energy loss of jets due to strong interactions with the medium

- **Observation of di-jet asymmetry**
 - Pair creations of jets
 - Energy difference between the observed jets

\[p_T > 8 \text{ GeV} \]
\[4 \text{ GeV} < p_T < 8 \text{ GeV} \]
\[1 \text{ GeV} < p_T < 4 \text{ GeV} \]
Di-jet asymmetry

- **Jet quenching**
 - Creation of high-energy partons (jets)
 - Energy loss of jets due to strong interactions with the medium

- **Observation of di-jet asymmetry**
 - Pair creations of jets
 - Energy difference between the observed jets

Christof Roland (talk at QM2011), modified

CMS (2011)
Di-jet asymmetry

- **Jet quenching**
 - Creation of high-energy partons (jets)
 - Energy loss of jets due to strong interactions with the medium

- **Observation of di-jet asymmetry**
 - Pair creations of jets
 - Energy difference between the observed jets

Bjorken (1983), Gyulassy and Plumer (1990), Gyulassy and Wang (1994), ...

CMS (2011)

Subleading Jet \(p_T^2 \)

Leading Jet \(p_T^1 \)

![Jet quenching and di-jet asymmetry diagram](image)

Christof Roland (talk at QM2011), modified

\(p_T > 8 \text{ GeV} \)

\(4 \text{ GeV} < p_T < 8 \text{ GeV} \)

\(1 \text{ GeV} < p_T < 4 \text{ GeV} \)
Di-jet asymmetry

- **Jet quenching**
 - Creation of high-energy partons (jets)
 - Energy loss of jets due to strong interactions with the medium

- **Observation of di-jet asymmetry**
 - Pair creations of jets
 - Energy difference between the observed jets

Bjorken (1983), Gyulassy and Plumer (1990), Gyulassy and Wang (1994), ...
Di-jet asymmetry

- **Jet quenching**
 - Creation of high-energy partons (jets)
 - Energy loss of jets due to strong interactions with the medium

- **Observation of di-jet asymmetry**
 - Pair creations of jets
 - Energy difference between the observed jets

\[
A_J = \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}}
\]

Bjorken (1983), Gyulassy and Plumer (1990), Gyulassy and Wang (1994), ...

CMS (2011)

1 GeV < \(p_T < 4 \) GeV

4 GeV < \(p_T < 8 \) GeV

\(p_T > 8 \) GeV

Christof Roland (talk at QM2011), modified
Overall momentum balance of di-jet events

- Missing transverse momentum

\[\Psi_T^\parallel = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{Leading Jet}}) \]

Positive direction

Leading Jet

CMS (2011)

Christof Roland (talk at QM2011), modified

S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. C 84, 024906, modified

1, Introduction

Yasuki Tachibana, "Di-jet asymmetric momentum transported by QGP fluid"
Overall momentum balance of di-jet events

- **Missing transverse momentum**

\[\psi_T^\parallel = \sum p_T^i \cos(\phi_i - \phi_{\text{Leading Jet}}) \]

Positive direction

Leading Jet

\[\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} = 0.8 \]

Figure 14: Average missing transverse momentum, for two centrality bins, 30–100% (left) and 0–30% (right). For the solid circles, values are shown as a function of di-jet momentum. The colored bands show the contribution to asymmetry, one sees that indeed...

\[h_6 \]

S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. C 84, 024906, modified

Christof Roland (talk at QM2011), modified
Overall momentum balance of di-jet events

- Missing transverse momentum

\[\Phi_T = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{Leading Jet}}) \]

\[\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \]

\[= 0.8 \]

[Image: Overall momentum balance of di-jet events diagram]
Overall momentum balance of di-jet events

- Missing transverse momentum

\[\Psi_T^\parallel = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{Leading Jet}}) \]

\[\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \]
\[= 0.8 \]

Positive direction

Leading Jet

Christof Roland (talk at QM2011), modified

S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. C 84, 024906, modified
Overall momentum balance of di-jet events

- Missing transverse momentum

\[\psi_T^\parallel = \sum_i -p_i^T \cos(\phi_i - \phi_{\text{Leading Jet}}) \]
\[\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} = 0.8 \]

Positive direction

Leading Jet

CMS (2011)

S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. C 84, 024906, modified

Christof Roland (talk at QM2011), modified

Track of In-Cone

Track of Out-of-Cone
Overall momentum balance of di-jet events

- Missing transverse momentum

\[\mathcal{P}_T^{\parallel} = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{Leading Jet}}) \]

Positive direction

Leading Jet

CMS (2011)

\[\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \]

= 0.8

Christof Roland (talk at QM2011), modified

S. Chatrchyan et al. [CMS Collaboration], Phys. Rev. C 84, 024906, modified

1. Introduction

Yasuki Tachibana, "Di-jet asymmetric momentum transported by QGP fluid"
Overall momentum balance of di-jet events

- Missing transverse momentum

\[\psi_T = \sum_i -p_T^i \cos(\phi_i - \phi_{\text{Leading Jet}}) \]

CMS (2011)

Positive direction

Leading Jet

Christof Roland (talk at QM2011), modified

Low-\(p_T\) particles

Originated from the collective flow?
Hydro Model with Source Terms
QGP-Fluid + Jet Model

- Relativistic hydrodynamic equations with external sources
 - (3+1)-D perfect QGP-fluid
 \[\partial_\mu T^{\mu\nu} = J^\nu \]
 - Energy-momentum tensor of the QGP fluid
 - Energy and momentum deposited from the jets
 - Massless jet particle traveling in a straight line
 - Collisional energy loss
 \[
 J^0(x) = \left[-\frac{dp^0_{\text{jet}}}{dt} \right] \delta^{(3)}(x - x_{\text{jet}}(t))
 \]
 \[
 \mathbf{J}(x) = \frac{p_{\text{jet}}}{p^0_{\text{jet}}} J^0(x)
 \]

Solve this hydrodynamic equations numerically **without linearization**
Collective flow induced by 1-jet

- 1-jet traveling through a uniform fluid

Energy density \((t = 9\ \text{fm/c})\)

Flow velocity \((t = 9\ \text{fm/c})\)

- Mach cone structure
- Vortex ring around the passage

Collective flow induced by 1-jet

- 1-jet traveling through a uniform fluid

Energy density \((t = 9 \text{ fm}/c)\)

Flow velocity \((t = 9 \text{ fm}/c)\)

- Mach cone structure
- Vortex ring around the passage

Collective flow induced by 1-jet

- **1-jet traveling through a uniform fluid**

Energy density \((t = 9 \text{ fm/c})\) and Flow velocity \((t = 9 \text{ fm/c})\)

-Mach cone structure

Simulations and Results
A Pair of Jets Traveling through an Expanding Fluid

- Fluid expanding strongly in the longitudinal direction
 - (3+1)-D perfect QGP-fluid (PPM)
 - Expanding coordinate system
 \((\tau, x, y, \eta)\)
 - New scheme at high precision
 - Initial condition of the energy density
 \(\eta: \text{Flat} + \text{Gaussian}\)
 \(x, y: \text{Glauber model (Pb-Pb, central coll.)}\)

- Di-jet
 - Massless
 - Back to back same energy jets
 - Traveling straight in the plane \(\eta = 0\)
 - Collisional energy loss
A Pair of Jets Traveling through an Expanding Fluid

- Fluid expanding strongly in the longitudinal direction
 - (3+1)-D perfect QGP-fluid (PPM)
 - Expanding coordinate system \((\tau, x, y, \eta)\)
 - New scheme at high precision
 - Initial condition of the energy density
 \(\eta: \text{Flat} + \text{Gaussian}\)
 \(x, y: \text{Glauber model (Pb-Pb, central coll.)}\)

- Di-jet
 - Massless
 - Back to back same energy jets
 - Traveling straight in the plane \(\eta = 0\)
 - Collisional energy loss

\[
A_J = \frac{p_{T1} - p_{T2}}{p_{T1} + p_{T2}}
\]
Expansion + induced flow

- Energy density distribution of the fluid in the x-y plane

\[e \text{ [GeV}^4\text{]} \]

```
x [fm]  
-15  -10  -5   0   5   10  15  

y [fm]  
-15  -10  -5   0   5   10  15  
```
Expansion + induced flow

- Energy density distribution of the fluid in the x-y plane

$e \ [\text{GeV}^4]$
Expansion + induced flow

- Energy density distribution of the fluid in the x-y plane

\[e \left[\text{GeV}^4 \right] \]
Expansion + induced flow

- Energy density distribution of the fluid in the x-y plane

\[e \ [\text{GeV}^4] \]

-15, -10, -5, 0, 5, 10, 15

-15, -10, -5, 0, 5, 10, 15

Hard Probes 2013, Stellenbosch Institute for Advanced Study, 7 November 2013
Expansion + induced flow

- Energy density distribution of the fluid in the x-y plane

\[e \text{ [GeV}^4\text{]} \]
Expansion + induced flow

- Energy density distribution of the fluid in the x-y plane
Energy density distribution of the fluid in the x-y plane

Expansion + induced flow

E [GeV4]

$e [\text{GeV}^4]$
Transverse momentum along the jets

- p_T-distribution of the particles originated from the collective flow (momenta of the jet particles are added to $p_T > 8$ GeV)

Christof Roland (talk at QM2011), modified
Missing transverse momentum

- Transverse momentum along the jets
 - p_T-distribution of the particles originated from the collective flow (momenta of the jet particles are added to $p_T > 8 \text{ GeV}$)

Deposited energy transported by the collective flow
Summary
Summary

- Relativistic hydrodynamic equations with source terms
 - Solve the equation numerically without linearization
 - Perfect fluid in full (3+1)-dimensional space
 - New scheme at high precision

- A pair of jets traveling through an expanding fluid
 - Mach cones distorted by the expansion
 - Many low-\(p_T\) particles in the out-of-cone region

Qualitative description of the CMS data

Deposited energy transported by the collective flow
back up
Outlook

- More realistic energy loss models
- Viscosity
- Event-by-event

.....
Energy loss

\[- \frac{dp^0_{jet}}{dt} = A \times \frac{8}{3} \pi \alpha_s^2 T^2 \left(1 + \frac{1}{6} n_f \right) \log \frac{\sqrt{4T p^0_{jet}}}{m_D} \]
Cooper-Frye formula

\[
E \frac{dN}{d^3p} = \frac{dN}{p_T dp_T d\phi_p d\eta} = \int f(x, p) p^\mu d\sigma_\mu
\]

\[
f(x, p) = \frac{d}{(2\pi)^3} \frac{1}{\exp \left[p^\mu u_\mu(x) / T(x) \right] + 1}
\]

At fixed \(\tau \),
\[
p^\mu d\sigma_\mu = \tau p_T \cosh (\eta_p - \eta) \, dx dy d\eta
\]

\[
\langle p_T \rangle = \int dp_T p_T \frac{dN}{dp_T}
\]

\[
= \int dp_T p^\mu d\sigma_\mu d\eta_p \, p_T^2 f(x, p)
\]
New scheme at high precision

- Relativistic hydrodynamic equations

\[T^{\mu\nu};_{\mu} = 0. \]

Expanding (- expanding) coordinate system

\[
\frac{\partial}{\partial \tau} (\tau T^{\tau\beta}) + \frac{\partial}{\partial x} (\tau T^{x\beta}) + \frac{\partial}{\partial y} (\tau T^{y\beta}) + \frac{1}{\tau} \frac{\partial}{\partial \eta_s} (\tau T^{\eta_s\beta}) - \left(\frac{\partial}{\partial \eta_s} \Lambda^\beta_{\nu}(\eta_s) \right) T^{\eta_s\nu} = 0.
\]

Additional source term

Nonconservation

New scheme

Lorentz transformation

time evolution

Expanding - Cartesian coordinate system

\[
\frac{\partial}{\partial \tau} (\tau T^{\tau\nu}) + \frac{\partial}{\partial x} (\tau T^{x\nu}) + \frac{\partial}{\partial y} (\tau T^{y\nu}) + \frac{\partial}{\partial \eta_s} (\tau T^{\eta_s\nu}) = 0.
\]

Conservation

K. Murase, YT, M. Hongo, R. Kurita and T. Hirano